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BubbleUp: Supporting DevOpsWith Data
Visualization
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BubbleUp is a tool that lets DevOps teams—data analysts who specialize in
building and maintaining online systems—rapidly figure out why anomalous data
have gone wrong. We developed BubbleUp with an iterative, human-centered design
approach. Through multiple rounds of feedback, we were able to build a tool that
presents a paired-histogram view to help make high-dimensional data make sense.

T he alarm pierces 3 A.M. sleep like a lightning
bolt: somebody somewhere is having trouble
using your service as they expect. As the human

on-call, you need to evaluate the following.

› Who is affected (and how many)?
› How bad is the failure?
› What is actually wrong?

And you’d better do it fast. Do you wake up the
rest of the troubleshooting team in the middle of the
night, or can you go back to bed?

No pressure or anything.
The need to evaluate well and fast is the core premise

of a group of tools generally called application perfor-
mancemanagement (APM).APMtools try tohelpDevOps
teams—teams of developer-operators—understand the
reliability of their online systems. At Honeycomb, our soft-
ware product (also called Honeycomb) is one such APM
tool: it supports DevOps teams in exploring complex
instrumentation data from their distributed systems.

From the perspective of data visualization, DevOps
work in a fascinating data analytics domain. They have
deep domain knowledge of highly complex systems;
they are responsible for both creating and analyzing a
data stream dedicated to the task of monitoring and
debugging distributed systems that are run on remote
servers. The analytics challenges that they solve have
impacts that can be measured in both dollars and
hours of lost sleep. Most interestingly, because

DevOps teams tend to repair bugs after finding them,
each investigation is likely to be unique.

The data analytics tasks that DevOps carry out are
familiar to the visualization research community, and
the lessons that we learn from their work generalize well
to other applications of data analytics. They are asking
loosely structured questions of high-dimensional data
and need to pursue analyses to solve complex problems.

This article discusses the design and development
of BubbleUp. A core component of Honeycomb, Bub-
bleUp exists to support DevOps. Its design is the
result of working closely with our target users to
understand their needs, iterating on the design, and
then tracking the use of the tool over time. BubbleUp
illustrates a way to help analysts navigate highly com-
plex data; the process of working intensively with our
target users helped us narrow down on a solution that
would directly address their challenges.

EXAMPLE: A SLOWAPI
Figures 1–3 show a sample usage of BubbleUp. An
operations team is responsible for handling an API
that is exposed on the web; client applications call
into it. This team is responsible for making sure that
performance continues to run at satisfactory levels.
They have been alerted that their system is handling
some requests intolerably slowly. Fortunately, their
system is well-instrumented, and so they can try to dig
into their data to figure out what is wrong.

As shown in Figure 1, they issue a query in their
dataset to get a heatmap of how long it takes to pro-
cess requests. Each point in the heatmap represents
the performance of a single request being processed.
They note the unusual spike, where some requests are
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taking much longer than others, and want to know
why they are different.

Using BubbleUp, they select those events (see
Figure 2)—the selection is shown as an orange box. Bub-
bleUp responds by showing them a series of histograms
comparing the data within the selection to that outside
of it (see Figure 3). Each histogram represents one dimen-
sion of the data. We compare the events that make up
the selection to the events that make up the baseline—
all the remaining events. The team can rapidly see that
only one endpoint and one app.user_id were affected: there
is only one selection bar on the histogram. In contrast,
they can also see that app.platform and app.build_id, in the
second row, do not seem to be important factors: the
selection and baseline bars are very similar.

DEBUGGING DISTRIBUTED
SYSTEMS

Let’s step back to discuss how BubbleUp fits into a
broader domain.

Most of the web now runs on distributed systems.
An online service might consist of dozens of different

microservices: front-end servers, back-end storage,
authentication services, transaction processors, adver-
tising management, and others. This complexity makes
it difficult to figure out what has gone wrong when
there is a failure. Which service caused a particular
slowdown or error? DevOps teams try to instrument
their code to describe what their systems are doing,
and then try to diagnose and figure out what is going
wrong when there is a failure.

The state of the art is to store important metrics—
system-level metrics, like memory and CPU usage,
and application-level metrics, like the duration of suc-
cessful API requests—to provide a useful overview of
how a service is doing. Each metric can be kept as a
single time series. It can be useful to split these met-
rics out across multiple dimensions: for example, there
might be a time series for every distinct API call, split
further by whether the requests succeeded or failed.

This makes it extremely fast and effective to offer
useful visualizations: a tally of erroneous requests, or
the 95th percentile of request duration, for each API
endpoint. A talented DevOps team grows experienced
with the ways their system can fail and can recognize
patterns in the metrics.

Visualization research has looked at this perspec-
tive on managing distributed systems. LiveRAC1 and
MeDiCi2 visualize metrics for many systems simulta-
neously, for example.

High Cardinality and High
Dimensionality
Unfortunately, this still yields a very shallow view of the
underlying system and hides a lot of detail about what is
actually going on. Accurate diagnosis requires richer
information. For example, handling a user request may
require a call to authentication, databases, and a web-
server to be properly processed. To figure out what’s

FIGURE 1. Heatmap of the latency for a request in Honey-

comb. The darkness of a cell shows the number of requests

that were served at that time and latency. The dark line

across the bottom of the heatmap shows that most events

were served very quickly, but an unusual spike across the top

shows some that were much slower.

FIGURE 2. User selects a region of the chart.

FIGURE 3. Bubbleup’s histograms, one per dimension, com-

paring the baseline to the selection.
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wrong with the system, it’s helpful to know what user
had made the request, which server processed it, what
call was made to the database, and how long each of
these took andwhat status code they returned.

Each of those attributes—the call to the data-
base, the user id—are different dimensions of the
dataset; some of those dimensions, like the user id,
are extremely high cardinality. Clearly, keeping a
combinatoric collection of time series becomes prohib-
itive. A new generation of systems support those many
dimensions, by using column stores. These can provide
powerful tools to explore this data. Honeycomb is one
of them; the general architecture for such systems fol-
lows the example of Facebook’s SCUBA.3 Now it is pos-
sible to provide that same count as before, but now
split acrossmany different dimensions.

To give an example of how it can look to start using
high-cardinality data, Figure 4 shows 50 overlaid time
series, representing different users of the system. The top

chart shows all the different users overlaid; the bottom
chart calls out the onewith an unusual diurnal pattern.

High Cardinality and the Core
Analysis Loop
This leads to a new analysis dilemma. How do people
who develop and operate systems figure out which
fields to look at? When there can be hundreds of
fields, with millions of values, where do you look to
figure out what caused a problem?

I was tasked with helping our users understand the
complexity of their data. I went out and interviewed a
dozen users, both internal and external to the com-
pany. The interviews focused on how they went about
going from an alert to a response; in many of them, we
chose a recent investigation that they had carried out
and reconstructed their process of discovery—includ-
ing looking at their dead ends. A single strategy
recurred in debugging incidents, the core analysis loop.

Users would often start with an anomaly in the sys-
tem that interested them. The core analysis loop
started when the user visualized a basic metric that
illustrates that anomaly—for example, they might have
noticed that some requests were getting slow, so they
visualized the median duration of events in the system
to see whether it had increased. They would then itera-
tively try to group thatmetric by various variables. Their
goal was to find a variable that had good explanatory
power: that one particular value of one variable could
show how the anomaly was different.

For example, let us say that we had encountered
the graph at the left side of Figure 5. We wanted to
better understand why the 95th percentile of data

FIGURE 4. Count of events on a service, broken down by user

ID. (Top) all of the customers, and (bottom) one customer,

highlighted, showing a diurnal cycle. Y axes are obscured to

hide actual traffic levels.

FIGURE 5. Left, the 95th percentile of the duration of requests to the service over time, which dropped from 22:00 to 10:00. Mid-

dle and right, grouped by build_id and by whether the app.batch flag was set. Build does not seem to be a factor, but batch does.
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processing time for this query was high at some times
and had such a strong dip from 22:00 to 10:00. I sus-
pect that some dimension in my data might explain
why the number had dropped. To find out, I might test
a series of hypotheses: could this be caused by a spe-
cific build of the software? Might it be that a certain
set of requests—perhaps those with the batched flag—
are acting up? For each hypothesis, I would group the
data: how does the line look when I aggregate only
within builds? What about within the batch flag?

The process of choosing a good variable to check
relies on the analyst’s experience: if they saw error
types that are often associated with database issues,
they would turn first to fields that were related to data-
bases. Others would use trial and error, or test hypoth-
eses about their senses of different classes of bugs.

Because Honeycomb is designed as a high-perfor-
mance query engine, with most queries returning in a
few seconds, users could quickly try many different
dimensions, looking for an answer. The process could
be taxing, as users had to try multiple fields. Honey-
comb offers a very loose schema—users can send in
whatever sorts of events they want. Many dimensions
had nomeaningful values, or had toomany distinct val-
ues, or simply were not relevant to the investigation.

This is a novel problem to the domain we were
working in. Many of our competitors simply restricted
the number of dimensions that users could send in,
often limiting them to under 10. In contrast, it was not
unusual for our customers to create datasets with
hundreds or thousands of dimensions.

This was a competitive advantage—but also a pain
point for our customers. In a low-dimensionality sys-
tem, it was never hard to find the interesting dimen-
sions. For our customers, there was a risk they would
get lost in the noise.

Designing BubbleUp
Honeycomb decided to take on the problem of shorten-
ing the core analysis loop. If we could make it simpler to
iterate through choices, they would more rapidly con-
verge on their final result. As a secondary advantage,
many of our users were unaccustomed to working with
high dimensionality data; an experience that helps them
understand howpowerful their datawerewould also help
themdifferentiate Honeycomb fromour competitors.

We drew inspiration from Scorpion4 and Macro-
base,5 which highlight the value of explaining anoma-
lies by comparing them to other data.

The heart of the concept is comparing two high-
dimensional datasets. Since we knew that our users had
already identified anomalous data—such as the dip

from 22:00 to 10:00—the question was whether there
was a way to separate these groups of points. It would
be possible to use high-dimensional analysis techniques
that would extract sophisticated, multidimensional
explanations. However, we suspected thatmost explan-
ations we were interested in could actually be much
simpler: in many cases, a single dimension could distin-
guish between the anomalous and normal data.

We collected operational data from our servers
and started experimenting with prototypes. The first
prototypes ran in a Python notebook and generated
sheets of side-by-side histograms: each dimension’s
distribution, shown for the data labeled as anomalous
against the baseline.

In these exemplar datasets, it became quickly
apparent that there were some dimensions that car-
ried important signals and others that did not. (In
Figure 6, which shows our first prototpe, mentioned
above, for example, cache_status seems relevant, while
bundler_minor_version probably is not). It also became
quickly visible that many dimensions were boring: they
had only one value or no values. Perhaps more inter-
estingly, some dimensions had a meaningful value
only in the outliers, or in the exceptions.

Admittedly, thesewere only samples of a single data-
set. Every Honeycomb customer has distinctive data,
with custom fields that relate to their own business
cases. We needed to validate our beliefs about whether
this wasmore broadly true for our customers, too.

One of our users granted us permission to run the
code on their data; we sent them a PDF of the python

FIGURE 6. First prototype of BubbleUp, built in a Python note-

book and visualized using matplotlib. Iterating in the notebook

allowed us to rapidly explore the design space and validate

our decisions.
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output. We were delighted at their positive feedback:
they instantly understood what was interesting about
some of the dimensions, and were able to diagnose a
previously unintelligible problem.

This was validation enough to get started on build-
ing an implementation. Our design team worked to try
to figure out how to incorporate the experience into
Honeycomb—a challenge, as the UI did not have a
simple way to select a region of the heatmap.

We deployed early (and unstable) betas, first to
internal users, then to external users who opted into
the experiment. Many of our external users participate
in a customer-facing set of Slack channels; wewere able
to reach out to those users via Slack to build a group of
interested users who could exchange feedback.

The feedback we got was a fascinating mix: users
would send us long bug-lists and complaints about UI
issues and pieces that were difficult to use—and then
casually comment that they had used the tool to
resolve an incident and that their time to detect issues
had dropped from hours to seconds. (One of our
insights was that if a user has spent enough time in a
tool to complain about small details, then that implies
they are finding enough value to dig that deep.)

While beta testing, one user wrote (in a Slack con-
versation), [I] was seeing some big latency spikes ...
look at that it’s mostly from one IP address ...oh look,
it’s one IP in Australia.

Another said, it “automates”my previousworkflow of
breaking down and hovering over the table. Some of the
use cases we had so far are pinpointing that a specific
web process is being slow or seeing that the slowness is
being caused byDB queries on a specific endpoint or job.

The sales team also had a strong reaction to Bub-
bleUp. They had been accustomed to showing how Hon-
eycomb could handle a wide range of data by trying a
series of wrong guesses before finding the right answer.
BubbleUp allowed them to create a shortened demo
(there’s an anomaly, we found it)—or to walk through the
slower process, and then showhowBubbleUp short-cut it.

Arguably, the hardest part about releasing Bub-
bleUp was the name: it went from Smart Drilldown to
Anomaly Detector to Copilot before we settled on
BubbleUp; different names were meant to both explain
what it did, but also have a personality.

Decisions in Design Iteration
BubbleUp went through numerous rounds of design
iteration. It is particularly interesting that we made a
number of substantial changes after we released Bub-
bleUp, in response to internal and external feedback
on the tool, and our own experience with it.

Color Coordination
In the first iteration of BubbleUp, we had users com-
pare blue to green histograms (see Figure 7). We got
very strong feedback that this was confusing: both
colors were well within the color palette of the heat-
map, and so users needed to look hard to figure out
which was the selection and which was the baseline.
By changing to the yellow-and-blue color palette, the
questions went away instantly: users understood the
yellow mapped to the yellow highlighted area.

Histogram Ranking
We wanted to ensure that the histograms were ordered
usefully, to help ensure that users could identify impor-
tant dimensions.We playedwith several differentmetrics
and even ran A/B tests comparing ranking algorithms. In
the end, we picked a relative risk metric (adapted from
Macrobase5), asymmetrically weighted to highlight fields
that had low cardinality values in the selection.

Null Pies
Honeycomb data can be nonrectangular: not all rows
of the dataset have all the same fields. For example, a
dataset might contain some events that use the Inter-
net—and, therefore, have fields like http.status and
http.request—while other events might use a database,
and so have fields like b.request and db.response. We rap-
idly found that for many of the most interesting data-
sets, a single bar for “no meaningful value” turned out
to dominate much of the UI. In Figure 8, for example,
status, batch, and batch_num_datasets were often empty but
dominated the display.

We worked with a designer to create donut charts
that could represent howmany nonempty values there
were, instead. In these three images, we see that every
event has a defined trace.trace_id. Interestingly, most
events in the selection have a defined trace.parent –

FIGURE 7. BubbleUp in the blue-green color palette. It was

difficult to determine which were the selection compared to

the baseline, as both colors were used in the heatmap.
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but very few events in the baseline have a defined
trace.parent. This can help a user rapidly understand
how the two groups differ.

Removing Background Events
Whenwe first designed BubbleUp, we contrasted the
selection against everything. That meant that we
counted points inside the rectangle twice: once in the
baseline then a second time in the selection. While

this had a certain mathematical elegance, it made it
actively harder to recognize signals in the data,
because data in the selection would also appear in the
baseline. Removing points in the selection from the
baselinemade it far easier to see what was different.

InteractingWith BubbleUp
We rapidly realized that one of the most interesting
next steps from a BubbleUp was issuing a second
query: allowing users to ask when I eliminate this fac-
tor, what’s different?, or when I focus on this factor,
how does it look?. Following user feedback, we added
click through interactions that allow users to create
filters and groupings from BubbleUp bars.

BubbleUp for Lines
BubbleUp was efficient to build because it can com-
pare two well-known sets of data points. Still, the
most common request to Honeycomb is not compar-
ing heatmap regions—it is understanding why a count,
or 95th percentile request, failed. Unfortunately, it is
much harder to compute that difference. In those
aggregated graphs, we longer know for sure which
points sit in the baseline and the selection. Crude
techniques—like picking only the slowest points, or all
the points in the time region—proved to be insuffi-
ciently accurate to provide useful signals. The techni-
ques in Scorpion4 can help with that computation,
and were considering how to incorporate them. Still,
BubbleUp-for-Count has been one of the dominant
feature requests from our users.

Continuing Life of BubbleUp
BubbleUp continues to be an integral part of the Honey-
comb experience. Interestingly, it has had a secondary
effect: it is so different from features offered by compet-
itors that it has caused people to see Honeycomb as
more substantially differentiated. It emphasizes the
value of high dimensional data, and how value can be
derived from something that had been seen as out of
reach.

The core value of BubbleUp is that it makes it easy
to ask novel questions, e.g.,What is special about that
particular point?. This is a key question in the DevOps
world—most likely, in many other fields, too—and it
drives action. Knowing why a data point is special can
help figure out what parameter needs to be tuned,
what server needs to be rebooted, or what line of
code broke.

We have also begun to build BubbleUp into our
product’s workflows because it answers the funda-
mental need to know what happened. For example,
Honeycomb recently released features to support ser-
vice level objectives (SLOs). An SLO computes the
ratio of good and bad events. A key panel of the SLO
view shows a BubbleUp of good compared to bad
events; we have found that this comparison can rap-
idly highlight important changes that have caused the
SLO to degrade.

CONCLUSION
Comparative Histograms
The heart of BubbleUp is comparing two pools of data
to each other as paired histograms. While the applica-
tions we have discussed here are for specialized
domain, the broader questions about comparing two
sets of data should be broadly applicable. I would
encourage data analysts in other domains, too, to pick
up this sort of a cross-dimensional comparison tool,
and to consider paired histograms as a powerful start-
ing step.

Iterative, User-Centered Design
Much of the strength of BubbleUp came, in part, from
iterating on feedback from our users throughout the
process. Honeycomb users—internal and external—
were involved in every development stage, from the
first prototypes in Python, through the first release,
and then through the incremental improvements.
Because of their feedback, we were able to verify that
we were going in the right direction, could decide
when we were good enough to release, and could pri-
oritize improvements.

FIGURE 8. Bubbleup with no value columns, top, and null pies,

bottom. The pie chart shows the percentage of rows that

have a valid, nonnull value; the histogram only shows the

valid values.
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This gave us the confidence to massively simplify
the fundamental concepts. Comparing sets of histo-
grams on points is computationally simple, rapid to
implement, and easy to understand. While techniques
like Scorpion4 and Macrobase5 are powerful, the cost
of building that infrastructure and the complexity of
maintaining it was intimidating to a product team in
an early stage startup. Building out BubbleUp allowed
us to accomplish that the level of value at a fraction
of the price.

Fundamentally, BubbleUp has helped our users
discover the value of high-dimensional data and to
deeply understand their challenges. When that alarms
wakes them at 3 A.M., they can find precisely where to
look—and faster remediation means better responses
to crises.
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